RT2Y

Compact temperature switch intrinsic safety

Main Features

- Excellent repeatability
- Fix dead band for control and alarm
- Resistant to accidental overtemperature
- Intrinsic safety Hazardous area 0, 1, 2

BOURDON
The Original by Baumer

Applications

- Power generation safety equipment
- Water treatment
- Valve and compressor control

Technical Data			
Temperature range	$-46 \ldots 0^{\circ} \mathrm{C}$ to $160 \ldots 250^{\circ} \mathrm{C}$	Electrical connection	Via internal terminal block with cable gland for $\varnothing 5.5$ to 8.5 mm
Temperature	Process: $\quad-46 \ldots+250^{\circ} \mathrm{C}$		
	Ambient: $\quad-30 \ldots+70^{\circ} \mathrm{C}$ (T5)	Electrical function	See ordering code details in page 5
	Stare : $\quad-30 \ldots+55^{\circ} \mathrm{C}$ (T6)	Adjustment	Internal adjustment possible for set point
	Storage: $\quad-40 \ldots+70^{\circ} \mathrm{C}$	ATEX	Type examination certificate
Repeatability	$\pm 1 \%$ F.S. @ constant temperature cycle		LCIE 03 ATEX 6160X
CE conformity	Low Voltage Directive LVD 2006/95/EC		EN 60079-0 : 2009
	ATEX Directive 94/9/EC		EN 60079-11 : 2012
Protection rating	IP 66 (EN 60529)		Marking
Process connection	Stainless steel 1.4404 (316L)		C 6081
Bulb	Stainless steel 1.4404 (316L) $\varnothing 9.5 \mathrm{~mm}$		(Ex) I M 1 Exial Ma
Scale	Internal graduated scale		(8ㅏ) III 1 G
Weight	$0.960 \mathrm{~kg}+$ transmission		Ex ia IIC T6 or T5 Ga
Body	Zamak black painting		Electrical data
Housing	Plastic PA6, blue		$\begin{aligned} & U_{\text {max }}=30 \mathrm{Vdc} \\ & \mathrm{I}_{\text {max }}=66 \mathrm{~mA} \end{aligned}$
Mounting	Wall mounting $2 \times$ M5 screws		$\mathrm{P}_{\text {max }}=0.5 \mathrm{~W}$
Ground connection	Via internal terminal block		$C_{i}=$ Negligible ; $L_{i}=$ Negligible

Options

Customer specific set point adjustment	Code SETP
Mounting on 2" pipe	Code 0407
Stainless steel tag plate and wire	Code 9941
Lead seal of the housing	Code 8990

Compact temperature switch intrinsic safety

Principle

A vapour filled flexible sensing element actuates a microswitch by means of a piston. The set point is adjusted by means of a compressible spring installed in opposition.

Set point and reset point must be between 10% and 90% of the selected scale.

Standard factory adjustment

Setpoint at 50% of the scale on falling temperature
Customer specific factory adjustment (option SETP)
The following specifications have to be given with the order:

- Setpoint value
- Adjustment on falling or raising temperature

Adjustable ranges

Scale	$\mathrm{T}^{\circ} \mathrm{C}$ max	Code	Micro-switch dead band ${ }^{1)}$ Fixed dead band	
			M	
${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$		10\%	90\%
			${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$
-46 ... 0	40	40	5	4
-20 ... 20	60	41	5	4
$0 \ldots 45$	80	42	3.5	3
40 ... 120	145	43	6	6
$100 . .180$	190	44	7	5.5
$20 . . .90$	120	45	11	11
160 ... 250	290	46	6.5	5
$70 . . .150$	175	48	11	8

[^0]
Micro switches characteristics

Switch code	M
	Gold contact
6 Vdc	$10 \ldots 50 \mathrm{~mA}$
12 Vdc	$10 \ldots 50 \mathrm{~mA}$
24 Vdc	$10 \ldots 50 \mathrm{~mA}$
30 Vdc	$10 \ldots 50 \mathrm{~mA}$
48 Vdc	N / A
110 Vdc	N / A
220 Vdc	N / A
115 Vac	N / A
250 Vac	N / A
Dielectric rigidity between contacts and ground	2000 V

Electrical connections

Micro switch Terminal block

For max. ambient temperature according to temperature classes T5 and T6 refer to technical data on page 1.
The installation must be made in an intrinsically safe circuit whose certified electrical safety parameters do not exceed any of the values $U_{\text {max }}$, $I_{\text {max }}$ and $P_{\text {max }}$ given in the electrical data on page 1.

All necessary measures must be taken by the user, to avoid the calorific transfer from the fluid to the apparatus head increasing the head's temperature to such that it reaches the self-ignition temperature of the gas in which it is used.

Compact temperature switch intrinsic safety

Dimensions (mm)

Direct mount temperature switches

Temperature switches with capillary

Stainless steel sliding male connection (TD2/3, TRDE1/2)

Thread and sizes		
F	G 1/2	$1 / 2$ NPT
H	18	21
L	36	40
A	17/flat	17/flat
B	$23 /$ flat	$23 /$ flat

After tightening of the clamping nut, the stem is fixed in the process connection. Tight up to 40 bar.

Stainless steel sliding male connection (TD1)

Waterproof after tightening mounted on the capillary.

Bulb length (S) according to the capillary length (K) and the temperature range (code)

	Capillary	Code	40	41	42	43	44	45	46	48
TRDE1	n/a	S/mm	100	100	100	100	n/a	100	n/a	n/a
TRDE2	n/a	S / mm	100	100	100	100	100	100	100	100
TD1, TD2, TD3	$\mathrm{K}=1 . . .4 \mathrm{~m}$	S / mm	100	100	100	100	100	100	100	100
TD1, TD2, TD3	$\mathrm{K}=5 . . .7 \mathrm{~m}$	S / mm	100	150	150	100	100	150	100	100
TD1, TD2, TD3	$\mathrm{K}=8 . . .10 \mathrm{~m}$	S / mm	100	200	200	100	100	200	100	100

Versions with $S=150 \mathrm{~mm}$ or $\mathrm{S}=200 \mathrm{~mm}$ are not feasible with $P=150 \mathrm{~mm}$

Ordering example with options

[^0]: ${ }^{1)}$ The value of the dead band is depending on the value of the set point.
 This table contains the dead band values for set point adjustment at 10% and 90% of the selected scale. For other set points the dead band value can be calculated by linear interpolation between the values at 10% and 90%.

